满分5 > 初中数学试题 >

△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△AD...

△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.manfen5.com 满分网
此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定. 证明:(1)①∵△ABC和△ADE都是等边三角形, ∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分) 又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD, ∴∠EAB=∠DAC, ∴△AEB≌△ADC(SAS).(3分) ②方法一:由①得△AEB≌△ADC, ∴∠ABE=∠C=60°. 又∵∠BAC=∠C=60°, ∴∠ABE=∠BAC, ∴EB∥GC.(5分) 又∵EG∥BC, ∴四边形BCGE是平行四边形.(6分) 方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分) ∵EG∥BC, ∴四边形BCGE是平行四边形.(6分) (2)①②都成立.(8分) (3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.(9分) 理由:方法一:由①得△AEB≌△ADC, ∴BE=CD(10分) 又∵CD=CB, ∴BE=CB.(11分) 由②得四边形BCGE是平行四边形, ∴四边形BCGE是菱形.(12分) 方法二:由①得△AEB≌△ADC, ∴BE=CD.(9分) 又∵四边形BCGE是菱形, ∴BE=CB(11分) ∴CD=CB.(12分) 方法三:∵四边形BCGE是平行四边形, ∴BE∥CG,EG∥BC, ∴∠FBE=∠BAC=60°,∠F=∠ABC=60°(9分) ∴∠F=∠FBE=60°,∴△BEF是等边三角形.(10分) 又∵AB=BC,四边形BCGE是菱形, ∴AB=BE=BF, ∴AE⊥FG(11分) ∴∠EAG=30°, ∵∠EAD=60°, ∴∠CAD=30度.(12分)
复制答案
考点分析:
相关试题推荐
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

manfen5.com 满分网 查看答案
有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)
manfen5.com 满分网
查看答案
如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
如图,△ABC中,E、F分别是AB、AC上的点.
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②⇒③,①③⇒②,②③⇒①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.

manfen5.com 满分网 查看答案
《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m处有“车速检测仪O”,测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5s.
(1)试求该车从A点到B点的平均速度;
(2)试说明该车是否超过限速.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.