满分5 > 初中数学试题 >

已知抛物线y=x2-2x+1与x轴的一个交点为(m,0),则代数式m2-2m+2...

已知抛物线y=x2-2x+1与x轴的一个交点为(m,0),则代数式m2-2m+2010的值为( )
A.2008
B.2009
C.2010
D.2011
将(m,0)代入抛物线y=x2-2x+1,求得m2-2m的值,然后将其整体代入所求的代数式并求值即可. 【解析】 根据题意,得 0=m2-2m+1, ∴m2-2m=-1,① 把②代入m2-2m+2010,得 m2-2m+2010=-1+2010=2009. 故选B.
复制答案
考点分析:
相关试题推荐
方程x2+x=0的根为( )
A.x=-1
B.x=0
C.x1=0,x2=-1
D.x1=0x2=1
查看答案
下列二次根式中属于最简二次根式的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
manfen5.com 满分网
查看答案
△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.
(1)如图(a)所示,当点D在线段BC上时.
①求证:△AEB≌△ADC;
②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;
(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.manfen5.com 满分网
查看答案
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.