满分5 > 初中数学试题 >

关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等...

关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常数项为0,则m等于( )
A.1
B.2
C.1或2
D.0
根据一元二次方程的定义解答. 【解析】 根据题意,知, , 解方程得m=2. 故选B.
复制答案
考点分析:
相关试题推荐
要使二次根式manfen5.com 满分网有意义,字母x必须满足的条件是( )
A.x≥1
B.x>-1
C.x≥-1
D.x>1
查看答案
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网 查看答案
O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为______
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为______
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为______
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为______时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为______时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,已知抛物线y=ax2+bx-3的对称轴为直线x=1,交x轴于A、B两点,交y轴于C点,其中B点的坐标为(3,0).
(1)直接写出A点的坐标;
(2)求二次函数y=ax2+bx-3的解析式,并用配方法确定抛物线的顶点坐标;
(3)求△BOC的面积.

manfen5.com 满分网 查看答案
如图,用一段长为36m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.