连接四边形ADCB的对角线,通过全等三角形来证得AC=BD,从而根据三角形中位线定理证得四边形NPQM的四边相等,可得出四边形MNPQ是菱形.
【解析】
连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=AC;
同理可证得:NP=DB,QP=AC,MQ=BD;
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选C.