若a与b相等,直接求出所求式子的值;若a与b不相等,根据题中已知的ax2+bx+c=0(a≠0),则x是一元二次方程ax2+bx+c=0的一根,由实数a、b满足a2+3a-1=0,b2+3b-1=0,得到a与b为一个一元二次方程的两根,找出此方程中的a,b及c,计算出b2-4ac,发现其值大于0,故利用根与系数的关系求出两根之和与两根之积,然后把所求式子通分后,分子配方得到关于a+b与ab的式子,将a+b与ab的值整体代入即可求出值.
【解析】
当a=b时,=1+1=2;
当a≠b时,a与b为方程x2+3x-1=0的两个根,
∵a=1,b=3,c=-1,
∴b2-4ac=32+4=13>0,
由根与系数的关系得:a+b=-=-3,ab==-1,
∴=.
综上,的值为2或-11.