满分5 > 初中数学试题 >

如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=...

如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=∠B=30度.BD是⊙O的切线吗?请说明理由.

manfen5.com 满分网
可以先猜想BD是⊙O的切线,根据切线的判定进行分析,得到OD是圆的半径,且OD⊥BD,从而可得到结论. 【解析】 BD是⊙O的切线.(2分) 连接OD; ∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∵∠A=∠B=30°, ∴∠BDA=180°-(∠A+∠B)=120°,(7分) ∴∠BDO=∠BDA-∠ADO=90°, 即OD⊥BD, ∴BD是⊙O的切线.(9分) 理由1:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∵∠A=∠B=30°, ∴∠BDA=180°-(∠A+∠B)=120,(7分) ∴∠BDO=∠BDA-∠ADO=90°,即OD⊥BD. ∴BD是⊙O的切线.(9分) 理由2:连接OD, ∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∴∠BOD=∠ADO+A=60°,(7分) ∵∠B=30°, ∴∠BDO=180°-(∠BOD+∠B)=90°, 即OD⊥BD, ∴BD是⊙O的切线. (9分) 理由3:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) 在BD的延长线上取一点E, ∵∠A=∠B=30°, ∴∠ADE=∠A+∠B=60°,(7分) ∴∠EDO=∠ADO+∠ADE=90°,即OD⊥BD ∴BD是⊙O的切线.(9分) 理由4:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) 连接CD,则∠ADC=90°,(5分) ∴∠ODC=∠ADC-∠ADO=60°,(6分) ∵OD=OC, ∴∠OCD=60°, ∵∠B=30°, ∴∠BDC=∠OCD-∠B=30°,(7分) ∴∠ODB=∠ODC+∠BDC=90°, 即OD⊥BD, ∴BD是⊙O的切线.(9分)
复制答案
考点分析:
相关试题推荐
如图是团风某座石拱桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为?

manfen5.com 满分网 查看答案
如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.

manfen5.com 满分网 查看答案
解方程:x2-x-3=0
查看答案
计算:manfen5.com 满分网
查看答案
manfen5.com 满分网如图,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t(s).∠APB=y(°),则下列图象中表示y与t之间函数关系最恰当的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.