由平行四边形ABCD被分成4个平行四边形,易得四边形AMOE与四边形MBFO同高,底分别为OE与OF,四边形EOND与四边形OFCN同高,底分别为OE与OF,即可得四边形AMOE与四边形MBFO面积的比等于对应底的比,四边形EOND与四边形OFCN等于对应底的比,然后由其中三个面积分别为8、10、30,根据比例的性质,即可求得第四个平行四边形的面积.
【解析】
∵平行四边形ABCD被分成4个平行四边形,
∴AB∥EF∥CD,AD∥MN∥BC,
∴四边形AMOE与四边形MBFO同高,底分别为OE与OF,四边形EOND与四边形OFCN同高,底分别为OE与OF,
∴,
∴,
即:=,
∴S四边形EOND=24.
故选C.