(1)当m=0,原方程变为:x+1=0,解得x=-1,为有理根;
(2)当m≠0,原方程为一元二次方程,则△=b2-4ac为完全平方数,即△=(m-1)2-4m=(m-3)2-8为完全平方数,设(m-3)2-8=n2,即(m-3)2=8+n2,而m是整数,完全平方数的末位数只能为1,4,5,6,9,经过分析得到m-3=3,即m=6,方程为:6x2-5x+1=0,(2x-1)(3x-1)=0,解得x1=,x2=.
【解析】
(1)当m=0,原方程变为:x+1=0,
解得x=-1,为有理根;
(2)当m≠0,原方程为一元二次方程,
∵方程mx2-(m-1)x+1=0有有理根,
∴△=b2-4ac为完全平方数,即△=(m-1)2-4m=(m-3)2-8为完全平方数,
而m是整数,
∴设(m-3)2-8=n2,即(m-3)2=8+n2,
∴完全平方数的末位数只能为1,4,5,6,9.
∴n2的末位数只能为1,6,而大于10的两个完全平方数相差大于8,
∴n=1,
∴m-3=3,即m=6,
所以方程为:6x2-5x+1=0,(2x-1)(3x-1)=0,
∴x1=,x2=,
故选C.