由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【解析】
由抛物线的开口方向向上可推出a>0;
因为对称轴在y轴右侧,对称轴为x=>0,又因为a>0,∴b<0;
由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0;
由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b>0;
由题意可知:当x=-1时,y=2,∴a-b+c=2,
当x=1时,y=0,∴a+b+c=0.
a-b+c=2与a+b+c=0相加得2a+2c=2,即a+c=1,移项得a=1-c,又∵a>0,c<0,∴a>1.
∴②,③,④正确.