满分5 > 初中数学试题 >

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分...

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网
(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线; (2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案. (1)证明:连接OA, ∵DA平分∠BDE, ∴∠BDA=∠EDA. ∵OA=OD, ∴∠ODA=∠OAD, ∴∠OAD=∠EDA, ∴OA∥CE.(3分) ∵AE⊥DE, ∴∠AED=90°. ∴∠OAE=∠DEA=90°. ∴AE⊥OA. ∴AE是⊙O的切线.(5分) (2)【解析】 ∵BD是直径, ∴∠BCD=∠BAD=90°. ∵∠DBC=30°,∠BDC=60°, ∴∠BDE=120°.(6分) ∵DA平分∠BDE, ∴∠BDA=∠EDA=60°. ∴∠ABD=∠EAD=30°.(8分) ∵在Rt△AED中,∠AED=90°,∠EAD=30°, ∴AD=2DE. ∵在Rt△ABD中,∠BAD=90°,∠ABD=30°, ∴BD=2AD=4DE. ∵DE的长是1cm, ∴BD的长是4cm.(10分)
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

manfen5.com 满分网 查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
求代数式的值:manfen5.com 满分网,其中x=2+manfen5.com 满分网
查看答案
计算:(π-1)+manfen5.com 满分网+|manfen5.com 满分网|-2manfen5.com 满分网 查看答案
请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:
manfen5.com 满分网manfen5.com 满分网
(1)请写出这四个图案都具有的两个共同特征:特征1:______;特征2:______
(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.