操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:
(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.
考点分析:
相关试题推荐
如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求点P与点P′之间的距离;
(2)∠APB的度数.
查看答案
已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O按顺时针方向旋转135°,点A、B的对应点为A
1,B
1,求点A
1,B
1的坐标.
查看答案
如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).
(1)作出△ABC关于原点O中心对称的图形;
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A
1B
1C
1,画出△A
1B
1C
1,并写出点A
1的坐标.
查看答案
在下图中,把△ABC向右平移5个方格,再绕点B的对应点顺时针方向旋转90度.
(1)画出平移和旋转后的图形,并标明对应字母;
(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.
查看答案
如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数.
查看答案