满分5 > 初中数学试题 >

(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A...

(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.
(1)当α=30°时(如图2),求证:AG=DH;
(2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.
manfen5.com 满分网
(1)由题意易证出AG=AD,DH=DB,而AD=DB,可得AG=DH; (2)可由证△AMD≌△DNB,再证△AMG≌△DNH,证出AG=DH; (3)可证Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD,证出AG=DH. 【解析】 (1)∵α=30°, ∴∠ADM=30°, ∵∠A=30°, ∴∠ADM=∠A. ∴AM=DM. 又∵MG⊥AD于G, ∴AG=AD. ∵∠CDB=180°-∠EDF-∠ADM=60°,∠B=60°, ∴△CDB是等边三角形. 又∵CH⊥DB于H, ∴DH=DB. ∵在△ABC中,∠ACB=90°,∠A=30°, ∴BC=AB. ∵BC=BD, ∴AD=DB. ∴AG=DH. (2)结论成立.理由如下: 在△AMD与△DNB中,∠A=∠NDB=30°,AD=DB,∠MDA=∠B=60°, ∴△AMD≌△DNB, ∴AM=DN. 又∵在△AMG与△DNH中,∠A=∠NDB,∠MGA=∠NHD=90°, ∴△AMG≌△DNH. ∴AG=DH. (3)方法一:【解析】 结论成立. Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD. ∵∠C=∠MDN=90° ∴C,D两点在以MN为直径的圆上, ∴C,M,D,N四点共圆 ∴∠DNM=∠DCA=30°, ∴DN=DM 又∵△DGM∽△NHD, ∴DH=MG=AG. 方法二: 【解析】 当0°<α<90°时,(1)中的结论成立. 在Rt△AMG中,∠A=30°, ∴∠AMG=60°=∠B. 又∠AGM=∠NHB=90°, ∴△AGM∽△NHB. ∴① ∵∠MDG=α, ∴∠DMG=90°-α=∠NDH. 又∠MGD=∠DHN=90°, ∴Rt△MGD∽Rt△DHN. ∴= ② ①×②,得.= 由比例的性质,得 = ∵AD=DB, ∴AG=DH.
复制答案
考点分析:
相关试题推荐
某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1 200元,每件衬衫应降价多少元;
(2)每件衬衫降价多少元时,商场平均每天赢利最多.
查看答案
如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是-2.
(1)一次函数的解析式;
(2)△AOB的面积.

manfen5.com 满分网 查看答案
如图△ABC中,AB=AC.D、E、F分别在AB、BC、CA边上,且∠DEF=∠B,BD=CE.
求证:DE=EF.

manfen5.com 满分网 查看答案
已知α,β是方程x2+2x-7=0的两个实数根,用你所学知识求α+2β2+4β的值,尽量简便哟!
查看答案
有一块方角钢板如图,请你用一条直线将其分为面积相等的两部分(不写作法,保留作用痕迹,在图中直接画出)请你给出两种不同的作法.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.