满分5 > 初中数学试题 >

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切...

如图,已知△ABC,AC=BC=6,∠C=90度.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G.
(1)∠BFG与∠BGF是否相等?为什么?
(2)求由DG、GE和弧ED所围成图形的面积.(阴影部分)

manfen5.com 满分网
(1)连接OD.根据切线的性质得到OD⊥AC,则OD∥BC;可得∠ODF=∠G,再结合对顶角相等和等边对等角得到∠BFG=∠BGF. (2)阴影部分的面积=直角三角形CDG的面积-(正方形的面积-扇形ODE的面积).根据等腰直角三角形的性质可求出有关边AB、OD的长,以及圆心角∠DOE的度数.进而可根据扇形的面积和直角三角形的面积求得阴影部分的面积. 【解析】 (1)∠BFG=∠BGF;理由如下: 连OD, ∵OD=OF(⊙O的半径), ∴∠ODF=∠OFD; ∵⊙O与AC相切于点D,∴OD⊥AC; 又∵∠C=90°,即GC⊥AC,∴OD∥GC, ∴∠BGF=∠ODF; 又∵∠BFG=∠OFD, ∴∠BFG=∠BGF. (2)连OE, ∵⊙O与AC相切于点D、与BC相切于点E, ∴DC=CE,OD⊥AC,OE⊥BC, ∵∠C=90°, ∴四边形ODCE为正方形, ∵AO=BO=AB==3, ∴OD=BC=×6=3, ∵∠BFG=∠BGF, ∴BG=BF=OB-OF=3-3; 从而CG=CB+BG=3+3; ∴S阴影=S△DCG-S正方形ODCE+S扇形ODE =S△DCG-(S正方形ODCE-S扇形ODE) =•3•(3+3)-(32-π•32) =.
复制答案
考点分析:
相关试题推荐
如图现有一块铁皮的长是宽的2倍,四角各截去一个正方形,制成一个高是3分米,容积是324立方分米的无盖长方体容器,求这块铁皮的长和宽.

manfen5.com 满分网 查看答案
如图,⊙M与x轴相切于原点,平行于y轴的直线交圆于P、Q两点,P点在Q点的下方.若P点的坐标是(2,1),求圆心M的坐标.

manfen5.com 满分网 查看答案
“数形结合”是一种很重要的数学思想,在我们学习过程中如果能够加以体会和利用,往往会给我们解题带来帮助,如右所示,图(一)~图(四)就反映了给一个方程配方的过程,
(1)请你根据图示顺序分别用方程表示出来:
图(一):______=21;
图(二):______=21;
图(三):______=21+22
图(四):______=25.
(2)请你运用配方法直接填空:x2-5x+______=(x-______2
(3)请你运用配方法解方程:2x2+5x+2=0.

manfen5.com 满分网 查看答案
小颖按如图所示的程序输入一个正数x,最后从输出端得到的数为16,求小颖输入的数x的值.
manfen5.com 满分网
查看答案
如图,在草地上有一个正六边形的围墙ABCDEF(不能进入),每边长6米,CD的延长线DG也是围墙,长度是19米.今有一只羊拴在D处,绳长18米,则羊能吃到围墙外    平方米的草.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.