某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).
考点分析:
相关试题推荐
如图,抛物线和直线y=kx-4k(k<0)与x轴、y轴都相交于A、B两点,已知抛物线的对称轴x=-1与x轴相交于C点,且∠ABC=90°,求抛物线的解析式.
查看答案
如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
查看答案
阅读下面的文字,解答问题:
题目:已知二次函数y=ax
2+bx+c的图象经过A(0,a),B(1,-2)两点,求证:这个二次函数图象的对称轴是直线x=2.
题目中有一段被墨水污染了而无法辨认的文字.
(1)根据现有的信息,你能否求出题目中二次函数的解析式?若能,写出解题过程;若不能,请说明理由;
(2)请你根据已有信息,增加一个适当的条件,把原题补充完整,所填条件是______.
查看答案
已知函数y=(a+2)x
2-2(a
2-1)x+1,其中自变量x为正整数,a也是正整数,求x何值时,函数值最小.
查看答案
二次函数
的图象与x轴交于A、两点(点A在点B左边),与y轴交于C点,且∠ACB=90°.
(1)求这个二次函数的解析式;
(2)设计两种方案:作一条与y轴不重合,与△A BC两边相交的直线,使截得的三角形与△ABC相似,并且面积为△BOC面积的
,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).
查看答案