某校研究性学习小组在研究有关二次函数及其图象性质的问题时,发现了两个重要结论.一是发现抛物线y=ax
2+2x+3(a≠0),当实数a变化时,它的顶点都在某条直线上;二是发现当实数a变化时,若把抛物线y=ax
2+2x+3的顶点的横坐标减少
,纵坐标增加
,得到A点的坐标;若把顶点的横坐标增加
,纵坐标增加
,得到B点的坐标,则A、B两点一定仍在抛物线y=ax
2+2x+3上.
(1)请你协助探求出当实数a变化时,抛物线y=ax
2+2x+3的顶点所在直线的解析式;
(2)问题(1)中的直线上有一个点不是该抛物线的顶点,你能找出它来吗?并说明理由;
(3)在他们第二个发现的启发下,运用“一般-一特殊-一般”的思想,你还能发现什么?你能用数学语言将你的猜想表述出来吗?你的猜想能成立吗?若能成立请说明理由.
查看答案
如图,在直角坐标系xOy中,二次函数图象的顶点坐标为C(4,-
),且在x轴上截得的线段AB的长
为6.
(1)求二次函数的解析式;
(2)设抛物线与y轴的交点为D,求四边形DACB的面积;
(3)在x轴上方的抛物线上,是否存在点P,使得∠PAC被x轴平分?如果存在,请求出P点的坐标;如果不存在,请说明理由.
查看答案