满分5 > 初中数学试题 >

如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在A...

如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.
(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;
(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;
(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.

manfen5.com 满分网
(1)因为EF∥AB,所以容易想到用相似三角形的面积比等于相似比的平方解题; (2)根据周长相等,建立等量关系,列方程解答; (3)先画出图形,根据图形猜想P点可能的位置,再找到相似三角形,依据相似三角形的性质解答. 【解析】 (1)∵△ECF的面积与四边形EABF的面积相等 ∴S△ECF:S△ACB=1:2     又∵EF∥AB∴△ECF∽△ACB  == ∵AC=4, ∴CE=; (2)设CE的长为x ∵△ECF∽△ACB ∴= ∴CF= 由△ECF的周长与四边形EABF的周长相等, 得x+EF+x=(4-x)+5+(3-x)+EF 解得 ∴CE的长为; (3)△EFP为等腰直角三角形,有两种情况: ①如图1,假设∠PEF=90°,EP=EF 由AB=5,BC=3,AC=4,得∠C=90° ∴Rt△ACB斜边AB上高CD= 设EP=EF=x,由△ECF∽△ACB,得: = 即= 解得x=,即EF= 当∠EFP´=90°,EF=FP′时,同理可得EF=; ②如图2,假设∠EPF=90°,PE=PF时,点P到EF的距离为EF 设EF=x,由△ECF∽△ACB,得: =,即= 解得x=,即EF= 综上所述,在AB上存在点P,使△EFP为等腰直角三角形,此时EF=或EF=.
复制答案
考点分析:
相关试题推荐
某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h(即manfen5.com 满分网m/s).交通管理部门在离该公路100 m处设置了一速度监测点A,在如图所示的坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.
(1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;
(2)点B坐标为______
查看答案
如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于F.
(1)求证:△ADC∽△BEC;
(2)若S△ABC=9,S△DCE=1,求sin∠DAC的值.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.
(1)写出点A,C的坐标;
(2)求点A和点C之间的距离.

manfen5.com 满分网 查看答案
如图,在点C测得天线AB的顶端A的仰角是60°,从点C向楼底E走6m到达点D,测得天线底端B的仰角是45°,已知天线AB=25m,求楼高BE(用根号表示)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.