满分5 > 初中数学试题 >

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F...

如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.
(1)求证:CF=BF;
(2)若AD=2,⊙O的半径为3,求BC的长.

manfen5.com 满分网
连接AC,根据已知条件利用等角对等边可以得到CF=BF;作CG⊥AD于点G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根据边之间的关系可求得BE的值,再根据相似三角形的判定得到△BCE∽△BAC,根据相似三角形的对应边成比例,可得到BC2=BE•AB,这样便求得BC的值,注意负值要舍去. (1)证明:连接AC,如图 ∵C是弧BD的中点 ∴∠BDC=∠DBC(1分) 又∵∠BDC=∠BAC 在△ABC中,∠ACB=90°,CE⊥AB ∴∠BCE=∠BAC ∠BCE=∠DBC(3分) ∴CF=BF;(4分) (2)【解析】 解法一:作CG⊥AD于点G, ∵C是弧BD的中点 ∴∠CAG=∠BAC, 即AC是∠BAD的角平分线.(5分) ∴CE=CG,AE=AG(6分) 在Rt△BCE与Rt△DCG中, CE=CG,CB=CD ∴Rt△BCE≌Rt△DCG(HL) ∴BE=DG(7分) ∴AE=AB-BE=AG=AD+DG 即6-BE=2+DG ∴2BE=4,即BE=2(8分) 又∵△BCE∽△BAC ∴BC2=BE•AB=12(9分) BC=±2(舍去负值) ∴BC=2.(10分) 解法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=∠ADB=90°,(5分 在Rt△ADB与Rt△FEB中, ∵∠ABD=∠FBE ∴△ADB∽△FEB, 则,即, ∴BF=3EF(6分) 又∵BF=CF, ∴CF=3EF 利用勾股定理得: (7分) 又∵△EBC∽△ECA 则, 则CE2=AE•BE(8分) ∴(CF+EF)2=(6-BE)•BE 即(3EF+EF)2=(6-2EF)•2EF ∴EF=(9分) ∴BC=.(10分)
复制答案
考点分析:
相关试题推荐
在如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1
(3)求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=1+manfen5.com 满分网,y=1-manfen5.com 满分网
查看答案
计算:(-1)2010-|-7|+manfen5.com 满分网×(manfen5.com 满分网-π)+(manfen5.com 满分网-1
查看答案
如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE'的长等于   
manfen5.com 满分网 查看答案
用半径为12cm,圆心角为150°的扇形做一个圆锥模型的侧面,则此圆锥底面圆的半径为    cm. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.