满分5 > 初中数学试题 >

如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的...

如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),点B的坐标为(manfen5.com 满分网,0),解答下列各题:
(1)求线段AB的长;
(2)求⊙C的半径及圆心C的坐标;
(3)在⊙C上是否存在一点P,使得△POB是等腰三角形?若存在,请求出∠BOP的度数;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A、B的坐标,即可求得OA、OB的长,进而可根据勾股定理求出AB的长; (2)由于∠AOB=90°,由圆周角定理知AB即为⊙C的直径,根据AB的长即可求得⊙C的半径;若过C作y轴的垂线,根据三角形中位线定理,很明显的可以看出C点横坐标是B点横坐标的一半,C点纵坐标是A点纵坐标的一半,由此得解; (3)由图知:若△POB是等腰三角形,则P点一定是OB垂直平分线与⊙C的交点,可据此求出P点的坐标及∠BOP的度数. 【解析】 (1)∵A(0,2),B(2,0) ∴OA=2,OB=2; Rt△OAB中,由勾股定理,得:AB==4; (2)∵∠AOB=90°, ∴AB是⊙C的直径; ∴⊙C的半径r=2; 过C作CE⊥y轴于E,则CE∥OB; ∵C是AB的中点, ∴CE是△AOB的中位线, 则OE=OA=1,CE=OB=,即C(,1); 故⊙C的半径为2,C(,1); (3)作OB的垂直平分线,交⊙C于M、N,交OB于D; 如图;连接OC; 由垂径定理知:MN必过点C,即MN是⊙C的直径; ∴M(,3),N(,-1); 在Rt△OMD中,MD=3,OD=, ∴∠BOM=60°; ∵MN是直径, ∴∠MON=90°,∠BON=30°; 由于MN垂直平分OB,所以△OBM、△OBN都是等腰三角形,因此M、N均符合P点的要求; 故存在符合条件的P点:P1(,3),∠BOP1=60°; P2(,-1),∠BOP2=30°.
复制答案
考点分析:
相关试题推荐
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

manfen5.com 满分网 查看答案
某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到91.26万元,求三、四月份平均每月增长的百分率是多少?
查看答案
如图,圆弧形桥拱的跨度AB=16米,拱高CD=4米,则拱桥的半径为    米.
manfen5.com 满分网 查看答案
解方程:(1)x2+2x-4=0   (2)x(2x-1)=3(1-2x)
查看答案
计算
(1)manfen5.com 满分网manfen5.com 满分网+6manfen5.com 满分网-2xmanfen5.com 满分网
(2)(2manfen5.com 满分网-3manfen5.com 满分网2+(2+manfen5.com 满分网)(2-manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.