满分5 > 初中数学试题 >

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起...

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
(1)根据正方形和等腰直角三角形的性质可证明△OBM≌△OFN,所以根据全等的性质可知BM=FN; (2)同(1)中的证明方法一样,根据正方形和等腰直角三角形的性质得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可证△OBM≌△OFN,所以BM=FN. (1)BM=FN. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠ABD=∠F=45°,OB=OF, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN; (2)BM=FN仍然成立. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠DBA=∠GFE=45°,OB=OF, ∴∠MBO=∠NFO=135°, 在△OBM与△OFN中,, ∴△OBM≌△OFN(ASA), ∴BM=FN.
复制答案
考点分析:
相关试题推荐
童心玩具厂欲生产一种圣诞老人的帽子,如图,其圆锥形帽子的母线长l=16cm,高PO=14cm,若生产1000顶这种帽子,请你帮玩具厂算一算至少需多少平方米的材料(不计接缝用料和余料,结果精确到0.01平方米).

manfen5.com 满分网 查看答案
高速公路上一个隧道的横截面的形状是以O为圆心的圆的一部分(弓形ACB),如图,若路面AB=10米,隧道顶端与路面的最大距离(弓形高)CD=7米,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,某市区南北走向的北京路与东西走向的喀什路相交于点O处.甲沿着喀什路以4m/s的速度由西向东走,乙沿着北京路以3m/s的速度由南向北走.当乙走到O点以北50m处时,甲恰好到点O处.若两人继续向前行走,求两个人相距85m时各自的位置.

manfen5.com 满分网 查看答案
解下列方程:
(1)y2-12=0;
(2)x2+2x-15=0;
(3)2x2-5x-7=0;
(4)2y(y-3)=4(y-3).
查看答案
计算:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.