首先连接OC,由AP:PB=1:4,可设AP=xcm,PB=4xcm,继而求得OP与PC的长,又由CD⊥AB,根据垂径定理的即可求得PC的长,然后根据勾股定理可得方程:(x)2+16=(x)2,解此方程求得x的值,即可求得AB、OP的值.
【解析】
连接OC,
∵AP:PB=1:4,
∴设AP=xcm,PB=4xcm,
∴AB=5xcm,
∴OC=OB=AB=xcm,
∴OP=BP-OB=xcm,
∵AB是⊙O的直径,弦CD⊥AB,
∴DP=CP=CD=×8=4(cm),∠OPC=90°,
∴在Rt△OPC中,OP2+PC2=OC2,
即(x)2+16=(x)2,
解得:x=2,
∴AB=10cm,OP=3cm.