满分5 > 初中数学试题 >

设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12...

设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为   
根据勾股定理c2=a2+b2代入方程求解即可. 【解析】 ∵a,b是一个直角三角形两条直角边的长 设斜边为c, ∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)-12=0 即(c2-3)(c2+4)=0, ∵c2+4≠0, ∴c2-3=0, 解得c=或c=-(舍去). 则直角三角形的斜边长为. 故答案为:
复制答案
考点分析:
相关试题推荐
关于X的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1-x22的值是    查看答案
已知方程2x2-mx-10=0的一根是-5,求方程的另一根为    ,m的值为    查看答案
比较大小:manfen5.com 满分网    manfen5.com 满分网(填“>”“<”“=”). 查看答案
函数y=manfen5.com 满分网中,自变量x的取值范围是    查看答案
manfen5.com 满分网如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.π
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.