满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y...

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式; (2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况: ①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标; ②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标; (3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标. 【解析】 (1)∵抛物线的顶点为Q(2,-1), ∴设抛物线的解析式为y=a(x-2)2-1, 将C(0,3)代入上式,得: 3=a(0-2)2-1,a=1; ∴y=(x-2)2-1,即y=x2-4x+3; (2)分两种情况: ①当点P1为直角顶点时,点P1与点B重合; 令y=0,得x2-4x+3=0,解得x1=1,x2=3; ∵点A在点B的右边, ∴B(1,0),A(3,0); ∴P1(1,0); ②当点A为△AP2D2的直角顶点时; ∵OA=OC,∠AOC=90°, ∴∠OAD2=45°; 当∠D2AP2=90°时,∠OAP2=45°, ∴AO平分∠D2AP2; 又∵P2D2∥y轴, ∴P2D2⊥AO, ∴P2、D2关于x轴对称; 设直线AC的函数关系式为y=kx+b(k≠0). 将A(3,0),C(0,3)代入上式得: , 解得; ∴y=-x+3; 设D2(x,-x+3),P2(x,x2-4x+3), 则有:(-x+3)+(x2-4x+3)=0, 即x2-5x+6=0; 解得x1=2,x2=3(舍去); ∴当x=2时,y=x2-4x+3=22-4×2+3=-1; ∴P2的坐标为P2(2,-1)(即为抛物线顶点). ∴P点坐标为P1(1,0),P2(2,-1); (3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形; 当点P的坐标为P2(2,-1)(即顶点Q)时, 平移直线AP交x轴于点E,交抛物线于F; ∵P(2,-1), ∴可设F(x,1); ∴x2-4x+3=1, 解得x1=2-,x2=2+; ∴符合条件的F点有两个, 即F1(2-,1),F2(2+,1).
复制答案
考点分析:
相关试题推荐
瑞安市已获“中国包装机械城”等10张“国字号”金名片.万松五金商店准备从瑞云包装机械厂购进甲、乙两种包装机械产品进行销售,若每个甲种产品的进价比每个乙种产品的进价少20元,且用800元购进甲种产品的数量与用1000元购进乙种产品的数量相同.
(1)求每个甲种产品、每个乙种产品的进价分别为多少元?
(2)若万松五金商店本次购进甲种产品的数量比购进乙种产品的数量的3倍少5个,购进两种产品的总数量不超过95个,该五金商店每个甲种产品的售价为120元,每个乙种产品的售价为150元,则将本次购进的甲、乙两种产品全部售出后,可使销售两种产品的总利润(利润=售价-进价)超过3710元,求万松五金商店从瑞云机械厂购进甲、乙两种产品各几个?有几种方案,请你设计出来.
查看答案
如图,直线AB与x轴交于点C,与反比例函数manfen5.com 满分网在第二象限的图象交于点A(-2,6)、点B(-4,m).
(1)求k,m的值; (2)求直线AB的解析式; (3)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,过圆上一点C作CD⊥AB于点D,点C是弧AF的中点,连接AF交CD于点E,连接BC交AF于点G.
(1)求证:AE=CE;
(2)已知AG=10,ED:AD=3:4,求AC的长.

manfen5.com 满分网 查看答案
2010年上海世博会于5月1日开幕,某商场销售世博会纪念品专柜对这一天销售A、B、C三种品牌的纪念品情况进行了统计,并将数据绘制成如下图1和图2所示的统计图.请你根据图中信息解答下列问题:
(1)请将图1补充完整;
(2)A品牌纪念品在图2中所对应的圆心角的度数是______度;
(3)根据上述统计信息,从5月1日开幕到10月31日闭幕期间,该商场对A、B、C三种品牌纪念品应如何进货?请你提出一条合理的建议.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;
(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.