满分5 > 初中数学试题 >

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直...

如图,在平面直角坐标系中,⊙M与x轴交于A,B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为manfen5.com 满分网,直线CD的函数解析式为y=-manfen5.com 满分网x+5manfen5.com 满分网
(1)求点D的坐标和BC的长;
(2)求点C的坐标和⊙M的半径;
(3)求证:CD是⊙M的切线.

manfen5.com 满分网
(1)因为点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上,可求出OM=,D(5,0),又因过圆心M的直径⊥AB,AC是直径,利用垂径定理可得OA=OB,AM=MC,∠ABC=90°,利用三角形的中位线可得OM=BC,BC=2; (2)因为BC=2,所以可设C(x,2),利用直线CD的函数解析式为y=-x+5.可得到y=-x+5=2,即求出C(3,2),利用勾股定理可得AC==,即⊙M的半径为2; (3)求出BD=5-3=2,BC=,CD==4,AC=4,AD=8,CD=4,,可得△ACD∽△CBD, 所以∠CBD=∠ACD=90°,CD是⊙M的切线. (1)【解析】 ∵点M的坐标为,直线CD的函数解析式为y=-x+5,D在x轴上, ∴OM=,D(5,0); ∵过圆心M的直径⊥AB,AC是直径, ∴OA=OB,AM=MC,∠ABC=90°, ∴OM=BC, ∴BC=2. (2)【解析】 ∵BC=2, ∴设C(x,2); ∵直线CD的函数解析式为y=-x+5, ∴y=-x+5=2, ∴x=3,即C(3,2), ∵CB⊥x轴,OB=3, ∴AO=3,AB=6,AC==, 即⊙M的半径为2. (3)证明:∵BD=5-3=2,BC=,CD==4, AC=4,AD=8,CD=4, ∴, ∴△ACD∽△CBD, ∴∠CBD=∠ACD=90°; ∵AC是直径, ∴CD是⊙M的切线.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
查看答案
附加题:在△ABC中,∠BAC=90°,AB=AC=manfen5.com 满分网,⊙A的半径为1,如图所示.若点O在BC上运动(与点B、C不重合),设BO=x,△AOC的面积为y.
(1)求关于x的函数解析式,并写出函数的定义域;
(2)以点O为圆心,BO长为半径作⊙O,求当⊙O与⊙A相外切时,△AOC的面积.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,∠BAC=45°,AB=BC.
(1)求证:BC是⊙O的切线;
(2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式.
(答案不唯一)

manfen5.com 满分网 查看答案
Rt△ABC中,∠C=90°,BC=4,AC=3,把它沿AB所在直线旋转一周,求所得的几何体的全面积.
查看答案
同时投掷两个质地均匀的骰子,
(1)列举两个骰子点数和的所有结果.
(2)求两个骰子点数的和是9的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.