满分5 > 初中数学试题 >

如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE...

如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)连接AE,AE的延长线与BC的延长线交于点G(如图2所示),若AB=2manfen5.com 满分网,AD=2,求线段BC和EG的长.
manfen5.com 满分网
(1)连接OE,OC,即可证明△OEC≌△OEC,根据DE与⊙O相切于点E得到OEC=90°,从而证得∠OBC=90°,则BC是圆的切线. (2)先求线段BC的长,过D作DF⊥BG于F,则四边形ABFD是矩形,有DF=AB=2,在Rt△DCF中,由切线长定理知AD=DE、CE=BC,那么CD=CE+2,CF=CE-2,利用勾股定理可求得CE的长;△ADE中,由于AD=DE,可得到∠DAE=∠AED=∠CEG,而AD∥BG,根据平行线的内错角相等得到∠G=∠EAD=∠CEG,由此可证得CE=CG=CB,即可求得BG的长; 在Rt△ABG中,利用勾股定理可求得AG的值,易证△ADE∽△GCE,根据相似三角形的相似比,可求得AE、EG的比例关系,联立AG的长,即可得到EG的值. (1)证明:连接OE,OC;(1分) ∵CB=CE,OB=OE,OC=OC ∴△OEC≌△OBC(SSS) ∴∠OBC=∠OEC (2分) 又∵DE与⊙O相切于点E ∴∠OEC=90° (3分) ∴∠OBC=90° ∴BC为⊙O的切线.(4分) (2)【解析】 过点D作DF⊥BC于点F, ∵AD,DC,BG分别切⊙O于点A,E,B ∴DA=DE,CE=CB, 设BC为x,则CF=x-2,DC=x+2, 在Rt△DFC中,, 解得:;(6分) ∵AD∥BG, ∴∠DAE=∠EGC, ∵DA=DE, ∴∠DAE=∠AED; ∵∠AED=∠CEG, ∴∠EGC=∠CEG, ∴CG=CE=CB=,(7分) ∴BG=5, ∴AG=;(8分) 解法一:连接BE,, ∴, ∴,(9分) 在Rt△BEG中, ,(10分) 解法二:∵∠DAE=∠EGC,∠AED=∠CEG, ∴△ADE∽△GCE,(9分) ∴, =, 解得:.(10分)
复制答案
考点分析:
相关试题推荐
顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:
顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题
营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.
顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?
营业员:有,请看《购买A品牌系列空调的优惠办法》.
购买A品牌系列空调的优惠办法:
方案一:各种型号的空调每台价格优惠5%,送货上门,负责安装,每台空调另加运输费和安装费共90元.
方案二:各种型号的空调每台价格优惠2%,送货上门,负责安装,免运输费和安装费.
根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:
(1)求A品牌系列空调平均每次降价的百分率?
(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?
查看答案
如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?

manfen5.com 满分网 查看答案
小敏和小李都想去看在我市举行的省乒乓球比赛,但俩人只有一张门票,小敏建议通过摸球来决定谁去观赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同),搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由.
查看答案
计算:manfen5.com 满分网
查看答案
如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=manfen5.com 满分网(k≠0)与△ABC有交点,则k的取值范围是( )
manfen5.com 满分网
A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.