如图,在平面直角坐标系中,将一块腰长为
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax
2+ax-2上
(1)点A的坐标为______,点B的坐标为______;
(2)抛物线的关系式为______;
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C″的位置.请判断点B′、C″是否在(2)中的抛物线上,并说明理由.
考点分析:
相关试题推荐
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).
查看答案
某商品的进价为每件30元.售价为每件70元时,每天可卖出60件,现需降价处理,且经市场调查:每降价1元,每关可多卖出2件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每天售出商品的利润为y元,请写出y与x的函数关系式;
(2)当每件售价多少元时,每天的利润最大?最大利润是多少?
查看答案
已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE⊥AB,垂足为点F,连接BD、BE.
(1)仔细观察图形并写出四个不同的正确结论:①______,②______,③______,④______(不添加其它字母和辅助线,不必证明);
(2)∠A=30°,CD=
,求⊙O的半径r.
查看答案
在一个不透明的布袋里装有4个大小、质地均相同的乒乓球,其中红色乒乓球有2个,黄色乒乓球有1个,蓝色乒乓球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方获得电影票).游戏规则是:两人各摸1次乒乓球,先由小明从布袋里随机摸出1个乒乓球,记录颜色后放回,将袋中乒乓球摇匀,再由小亮随机摸出1个乒乓球.若两人摸到的乒乓球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
查看答案
如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且BC=CD=2AD,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.将△BCE绕点C顺时针旋转90°得到△DCG,连接EG.
(1)求证:CD垂直平分EG.
(2)求证:直线BE平分线段CD.
查看答案