满分5 > 初中数学试题 >

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF. (1)...

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF; (2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相垂直平分,根据对角线互相垂直且平分的四边形是菱形,即可判定四边形AEMF是菱形. (1)证明:∵四边形ABCD是正方形, ∴AB=AD,∠B=∠D=90°, 在Rt△ABE和Rt△ADF中, ∵, ∴Rt△ABE≌Rt△ADF(HL) ∴BE=DF;(4分) (2)【解析】 四边形AEMF是菱形,理由为: 证明:∵四边形ABCD是正方形, ∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等), ∵BE=DF(已证), ∴BC-BE=DC-DF(等式的性质),即CE=CF, 在△COE和△COF中, , ∴△COE≌△COF(SAS), ∴OE=OF,又OM=OA, ∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形), ∵AE=AF, ∴平行四边形AEMF是菱形.(8分)
复制答案
考点分析:
相关试题推荐
已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.
(1)求证:AF=CE;
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.

manfen5.com 满分网 查看答案
如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角∠ACG平分线于点F.
(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并说明理由.
(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?并说明理由.

manfen5.com 满分网 查看答案
如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为manfen5.com 满分网,求旋转的角度n.

manfen5.com 满分网 查看答案
如图在△ABC和△CDE中,AB=AC=CE,BC=DC=DE,AB>BC,∠BAC=∠DCE=∠α,点B、C、D在直线l上,按下列要求画图(保留画图痕迹);
(1)画出点E关于直线l的对称点E′,连接CE′、DE′;
(2)以点C为旋转中心,将(1)中所得△CDE′按逆时针方向旋转,使得CE′与CA重合,得到△CD′E″(A).画出△CD′E″(A).解决下面问题:
①线段AB和线段CD′的位置关系是______
②求∠α的度数.

manfen5.com 满分网 查看答案
如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.