满分5 > 初中数学试题 >

如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A...

如图,在△ABC中,∠A=90°,∠C=30°,AB=1,两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C.
(1)点Q的速度是点P速度的多少倍?
(2)设AP=x,△APQ的面积是y,求y关于x的函数关系式,并写出x的取值范围,
(3)求出y的最大值.

manfen5.com 满分网
(1)由于在△ABC中,∠A=90°,∠C=30°,AB=1,由此可以利用勾股定理求出BC,AC的长度,又两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C,利用这个条件即可求解; (2)有两种情况:①当Q在AB上,利用(1)的结论和三角形的面积公式即可求解;②当Q在BC上,利用(1)的结论求出BQ,CQ的长度,也就可以求出Q到AB的距离,再利用三角形的面积公式即可求解; (3)利用(2)的结论和二次函数的性质即可求解. 【解析】 (1)∵在△ABC中,∠A=90°,∠C=30°,AB=1, ∴BC=2,AC=, 而两个动点P,Q同时从A点出发,点P沿AC运动,点Q沿AB,BC运动,两点同时到达点C ∴Q的速度是P的速度的(2+1)÷=倍;   (2)∵设AP=x,△APQ的面积是y, ①当Q在AB上, 即时,, ②当Q在BC上, 即时,, 即:; (3)对于() 当时, 对于( ≤x≤) 当时,, ∵, ∴当时,.
复制答案
考点分析:
相关试题推荐
某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.
(3)当生产第几档次的产品时,一天的总利润最大?最大总利润是多少?
查看答案
在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,与x轴相交于A、B两点(如图),点C的坐标为(0,-3),且BO=CO
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积.

manfen5.com 满分网 查看答案
如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?

manfen5.com 满分网 查看答案
某人骑自行车以每时10km的速度由A地到达B地,路上用了6小时.
(1)写出时间t与速度v之间的关系式.说明比例系数的实际意义.
(2)因故这辆自行车需在5小时内由A地到达B地,则此时自行车的平均速度至少应是多少?
查看答案
已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=3.当x=-3时,y=4.求x=3时,y的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.