九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是______m
2;
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为lm,设AB为xm,当AB=______m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为lm共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.
考点分析:
相关试题推荐
如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).
(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.
查看答案
已知:抛物线的解析式为y=x
2-(2m-1)x+m
2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.
查看答案
已知:如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,BD=DF.
(1)求证△CDF≌△EDB;
(2)请你判断BE+DE与DF的大小关系,并证明你的结论.
查看答案
若一个面积为20cm
2的矩形的宽为y(cm),长为x(cm).
(1)直接写出y与x的函数关系式;并写出自变量x的取值范围;
(2)在右面的方格中用描点法画出所求函数的图象;
(3)当长满足5≤x≤10时,求宽y的取值范围.
查看答案
已知一次函数y=x+m与反比例函数y=
(m≠-1)的图象在第一象限内的交点为P(x
,3).
(1)求x
的值;
(2)求一次函数和反比例函数的解析式.
查看答案