过点C作CE⊥AB,由已知可得∠CAB=30°,根据直角三角形中30度所对的角是斜边的一半可求得AB,AC,CE的长,再根据等腰梯形同一底的两角相等可推出∠DAC=∠DCA,从而可求得CD的长,最后根据等腰梯形的面积公式求解即可.
【解析】
过点C作CE⊥AB,
∵AC⊥BC,∠B=60°,
∴∠CAB=30°,
∵BC=2cm,
∴AB=4cm,AC=2cm,
∴CE=cm,
∵梯形ABCD是等腰梯形,CD∥AB,
∴∠B=∠DAB=60°,∠CAB=∠DCA=30°,
∵∠CAB=30°,
∴∠DAC=∠DCA=30°,
∴CD=AD=BC=2cm,
∴梯形ABCD的面积=(AB+CD)×CE=(4+2)×=3cm2,
故选A.