根据轴对称,作出点C关于AB的对称点E,连接DE交AB于点P,此时PC+PD最小,就等于DE的长.由题意可知∠DOE=120°,然后在△DOE中求出DE的长.
【解析】
如图:点E是点C关于AB的对称点,根据对称性可知:PC=PE.
由两点之间线段最短,此时DE的长就是PC+PD的最小值.
∵=100°,=40°,∴=100°,=80°,=80°+40°=120°.
∴∠DOE=120°,∠E=30°,
在△DOE中,OD=OE=1,∠DOE=120°,∠E=30°,DE=.
所以PC+PD的最小值为 .
故答案为:.