满分5 > 初中数学试题 >

如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E. (...

如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

manfen5.com 满分网
(1)根据两组对边分别平行证得四边形AECD是平行四边形,只需证明四边形AECD的两邻边相等即可.根据AC平分∠BAD,以及CE∥AD,易证得∠EAC=∠ECA,由此可知AE=CE,即四边形AECD是菱形; (2)连DE,DE交AC于F,根据菱形的性质,对角线互相垂直且平分有:DE垂直平分AC,则EF是△ABC的中位线,有EF∥BC,则BC⊥AC,由此可证得△ABC是直角三角形. (1)证明:∵AB∥CD,即AE∥CD, 又∵CE∥AD,∴四边形AECD是平行四边形. ∵AC平分∠BAD,∴∠CAE=∠CAD, 又∵AD∥CE,∴∠ACE=∠CAD, ∴∠ACE=∠CAE, ∴AE=CE, ∴四边形AECD是菱形; (2)【解析】 △ABC是直角三角形. 证法一:∵E是AB中点,∴AE=BE. 又∵AE=CE,∴BE=CE,∴∠B=∠BCE, ∵∠B+∠BCA+∠BAC=180°, ∴2∠BCE+2∠ACE=180°,∴∠BCE+∠ACE=90°. 即∠ACB=90°, ∴△ABC是直角三角形. 证法二:连DE,由四边形AECD是菱形,得到DE⊥AC,且平分AC, 设DE交AC于F, ∵E是AB的中点,且F为AC中点, ∴EF∥BC.∠AFE=90°, ∴∠ACB=∠AFE=90°, ∴BC⊥AC, ∴△ABC是直角三角形.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网manfen5.com 满分网,求a2+b2-ab的值.
查看答案
计算与解方程
(1)manfen5.com 满分网
(2)manfen5.com 满分网
(3)x2+4x+2=0
(4)(x+2)2=9(x-1)2
查看答案
如图,⊙O的直径AB长为2,弧AC的度数为100°,弧BD的度数为40°,点P是直径AB上的动点,则PC+PD的最小值是   
manfen5.com 满分网 查看答案
某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为     查看答案
如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.