满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的...

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网
(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长; (2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线; (3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. (1)【解析】 在矩形OABC中,设OC=x,则OA=x+2 ∴x(x+2)=15 ∴x1=3,x2=-5 ∵x2=-5(不合题意,舍去) ∴OC=3,OA=5; (2)证明:连接O′D; ∵在矩形OABC中,, ∴△0CE≌△ABE(SAS), ∴EA=EO, ∴∠1=∠2; ∵在⊙O′中,O′O=O′D, ∴∠1=∠3, ∴∠3=∠2, ∴O′D∥AE; ∵DF⊥AE, ∴DF⊥O′D, ∵点D在⊙O′上,O′D为⊙O′的半径, ∴DF为⊙O′切线; (3)【解析】 不同意.理由如下: ①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=0C=3; ∵APl=OA=5, ∴AH=4, ∴OH=l, 求得点P1(1,3)同理可得:P4(9,3)(7分); ②当OA=OP时, 同上可求得P2(4,3),P3(-4,3),(9分) ∴在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.
求证:(1)PD=PE;
(2)PE2=PA•PB.

manfen5.com 满分网 查看答案
已知关于x的方程x2-(k+2)x+2k=0.
(1)求证:无论k取任意实数值,方程总有实数根.
(2)若等腰三角形ABC的一边a=1,另两边长b、c恰是这个方程的两个根,求△ABC的周长.
查看答案
阅读下列材料,然后回答问题.
在进行二次根式的化简与运算时,我们有时会碰上如manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网一样的式子,其实我们还可以将其进一步化简:
manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网;(一)
manfen5.com 满分网=manfen5.com 满分网(二)
manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网(三)
以上这种化简的步骤叫做分母有理化.
manfen5.com 满分网还可以用以下方法化简:
manfen5.com 满分网=manfen5.com 满分网(四)
(1)请用不同的方法化简manfen5.com 满分网
①参照(三)式得manfen5.com 满分网=( );
②参照(四)式得manfen5.com 满分网=( )
(2)化简:manfen5.com 满分网
查看答案
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)

manfen5.com 满分网 查看答案
市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.