满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点...

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)连接BC,由已知得∠ACB=2∠AOB=60°,AC=AO=5,根据弧长公式求解; (2)连接OD,由垂直平分线的性质得OD=OA=10,又DE=8,在Rt△ODE中,由勾股定理求OE,依题意证明△OEF∽△DEA,利用相似比求EF; (3)存在.当以点E、C、F为顶点的三角形与△AOB相似时,分为①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,②当交点E在点C的右侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,③当交点E在点O的左侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,三种情况,分别求E点坐标. 【解析】 (1)连接BC, ∵A(10,0),∴OA=10,CA=5, ∵∠AOB=30°, ∴∠ACB=2∠AOB=60°, ∴弧AB的长=;(4分) (2)①若D在第一象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO-OE=10-6=4, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即, ∴EF=3;(4分) ②若D在第二象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO+OE=10+6=16, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即=, ∴EF=12; ∴EF=3或12; (3)设OE=x, ①当交点E在O,C之间时,由以点E、C、F为顶点的三角 形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB, 当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC 中点,即OE=, ∴E1(,0); 当∠ECF=∠OAB时,有CE=5-x,AE=10-x, ∴CF∥AB,有CF=, ∵△ECF∽△EAD, ∴,即,解得:, ∴E2(,0); ②当交点E在点C的右侧时, ∵∠ECF>∠BOA, ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO, 连接BE, ∵BE为Rt△ADE斜边上的中线, ∴BE=AB=BD, ∴∠BEA=∠BAO, ∴∠BEA=∠ECF, ∴CF∥BE, ∴, ∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, 即,解得,<0(舍去), ∴E3(,0); ③当交点E在点O的左侧时, ∵∠BOA=∠EOF>∠ECF. ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO 连接BE,得BE==AB,∠BEA=∠BAO ∴∠ECF=∠BEA, ∴CF∥BE, ∴, 又∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, ∴, 解得x1=,x2=, ∵点E在x轴负半轴上, ∴E4(,0), 综上所述:存在以点E、C、F为顶点的三角形与△AOB相似, 此时点E坐标为:E1(,0)、E2(,0)、E3(,0)、E4(,0).(4分)
复制答案
考点分析:
相关试题推荐
要在半径长为1米、圆心角为60°的扇形AOB铁皮上截取一块尽可能大的正方形.小明设计如下两种截取方案.
方案一(如图1):C在半径OA上,D、E在半径OB上,F在弧AB上;
方案二(如图2):C在OA上,D在OB上,E,F在弧AB上.
请通过计算这两种方案中正方形铁皮的面积帮小明选择合理的方案.(参考数据:manfen5.com 满分网
manfen5.com 满分网
查看答案
已知:平面直角坐标系中,⊙A的圆心在x轴上,半径为1,⊙A沿x轴上向右平移.
(1)如图1,当⊙A与y轴相切时,点A的坐标为______
(2)如图2,设⊙A以每秒1个单位的速度从原点左侧沿x轴向右平移,直线l:manfen5.com 满分网与x轴交于点B,交y轴于点C,问:在运动过程中⊙A与直线l有公共点的时间共几秒?manfen5.com 满分网
查看答案
某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
查看答案
如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F
(1)求证:FC=FB;
(2)若CD=24,BE=8,求⊙O的直径.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.