满分5 > 初中数学试题 >

下列各图中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.

下列各图中,既是轴对称图形,又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
根据正多边形的性质和轴对称图形与中心对称图形的定义解答. 【解析】 由正多边形的性质知,偶数边的正多边形既是轴对称图形,又是中心对称图形; 奇数边的正多边形只是轴对称图形,不是中心对称图形. 故选B.
复制答案
考点分析:
相关试题推荐
下列计算正确的是( )
A.(a23=a5
B.a6÷a3=a2
C.a2+a2=a4
D.a2•a4=a6
查看答案
-3的绝对值是( )
A.-3
B.3
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.
(1)求用x表示S的函数表达式,并写出x的取值范围;
(2)是否存在一点E,使S△DEF:SABCD=1:2?若存在,求出相应的x;若不存在,说明理由.

manfen5.com 满分网 查看答案
探究题:
数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同取法?
为找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种取法?
根据题意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3,而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有manfen5.com 满分网种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种取法?
根据题意,有下列取法:1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5,5+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有manfen5.com 满分网种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5,而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有manfen5.com 满分网种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种取法?
根据题意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6,而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有manfen5.com 满分网种不同的取法…
问题解决
仿照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,共有______种不同取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个数,使得所取的两个数字之和大于n,共有______种不同取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个数,使得所取的两个数之和大于n,共有______种不同取法;(只填最简算式)
(4)各边长都是整数且不相等,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)
查看答案
如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.