满分5 > 初中数学试题 >

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°...

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=manfen5.com 满分网S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
先作出恰当的辅助线,再利用全等三角形的性质进行解答. 【解析】 (1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等, 则S△DEF+S△CEF=S△ABC; (2)图2成立;图3不成立. 图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°, 又∵∠C=90°, ∴DM∥BC,DN∥AC, ∵D为AB边的中点, 由中位线定理可知:DN=AC,MD=BC, ∵AC=BC, ∴MD=ND, ∵∠EDF=90°, ∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°, ∴∠MDE=∠NDF, 在△DME与△DNF中, ∵, ∴△DME≌△DNF(ASA), ∴S△DME=S△DNF, ∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF, 由以上可知S四边形DMCN=S△ABC, ∴S△DEF+S△CEF=S△ABC. 图3不成立,连接DC, 证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°) S△DEF=S△DBF+S四边形DBFE, =S△DEC+S四边形DBFE, =S五边形DBFEC, =S△CFE+S△DBC, =S△CFE+, ∴S△DEF-S△CFE=. 故S△DEF、S△CEF、S△ABC的关系是:S△DEF-S△CEF=S△ABC.
复制答案
考点分析:
相关试题推荐
已知m,n是关于x的一元二次方程ax2+bx+c=0的两个正实数根,求证:以m+n为边长的正方形面积与以m、n为边长的矩形面积之比不小于4.
查看答案
如图要建一个面积为130m2的仓库,仓库一边靠墙(墙长16m)并与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,求仓库的长和宽.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,AB=AC,∠A=120度.
(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).
(2)猜想CM与BM之间有何数量关系,并证明你的猜想.

manfen5.com 满分网 查看答案
如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.

manfen5.com 满分网 查看答案
用公式法解方程:2x2+5x-1=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.