满分5 > 初中数学试题 >

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)...

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网
(1)先假设出函数解析式,利用三点法求解函数解析式. (2)设出M点的坐标,利用S=S△AOM+S△OBM-S△AOB即可进行解答; (3)分OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;OB是对角线时,由图可知点A与P应该重合. 【解析】 (1)设此抛物线的函数解析式为: y=ax2+bx+c(a≠0), 将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得: 解得, 所以此函数解析式为:y=; (2)∵M点的横坐标为m,且点M在这条抛物线上, ∴M点的坐标为:(m,), ∴S=S△AOM+S△OBM-S△AOB =×4×(-m2-m+4)+×4×(-m)-×4×4 =-m2-2m+8-2m-8 =-m2-4m, =-(m+2)2+4, ∵-4<m<0, 当m=-2时,S有最大值为:S=-4+8=4. 答:m=-2时S有最大值S=4. (3)设P(x,x2+x-4). 当OB为边时,根据平行四边形的性质知PB∥PQ, ∴Q的横坐标的绝对值等于P的横坐标的绝对值, 又∵直线的解析式为y=-x, 则Q(x,-x). 由PQ=OB,得|-x-(x2+x-4)|=4, 解得x=0,-4,-2±2. x=0不合题意,舍去. 如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4). 由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2)或(4,-4).
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点的距离为manfen5.com 满分网时,求出此二次函数的解析式.
查看答案
某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.
(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是______
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
manfen5.com 满分网
查看答案
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
查看答案
如图,已知反比例函数manfen5.com 满分网与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;
(2)求四边形OCDB的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.