如图,过B′作B′D⊥AC,垂足为B′,则三角板A'B'C'平移的距离为B′D的长,根据AB′=AC-B′C,∠A=30°,在Rt△AB′D中,解直角三角形求B′D即可.
【解析】
如图,过B′作B′D⊥AC,垂足为B′,
∵在Rt△ABC中,AB=12,∠A=30°,
∴BC=AB=6,AC=AB•cos30°=6,
由旋转的性质可知B′C=BC=6,
∴AB′=AC-B′C=6-6,
在Rt△AB′D中,∵∠A=30°,
∴B′D=AB′•tan30°=(6-6)×=(6-2)cm.
故选C.