(1)根据一元二次方程有实数根的条件,得出△=(-2)2-4×2(3m-1)≥0①;由根与系数的关系可得 x1+x2=1,x1•x2=,代入,又得到一个关于m的不等式②,解由①②组成的不等式组,即可求出m的取值范围.
(2)先根据一元二次方程有两个负数根,由一元二次方程根与系数的关系,得出两根之和小于0,两根之积大于0,解不等式组求出m的取值范围,再代入判别式△≥0进行检验,即可求出结果.
【解析】
(1)∵方程2x2-2x+3m-1=0有两个实数根,
∴△=(-2)2-4×2(3m-1)≥0,解得m≤.
由根与系数的关系,得x1+x2=1,x1•x2=.
∵,
∴<1,解得m>-.
∴-<m≤;
(2)∵关于x的一元二次方程8x2+(m+1)x+m-7=0有两个负数根,
∴,
解得m>7.
又∵△=(m+1)2-4×8(m-7)=m2-30m+225=(m-15)2≥0,
∴实数m的取值范围是m>7.
故答案为-<m≤;m>7.