满分5 > 初中数学试题 >

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(...

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解; (2)作PM⊥BC,将四边形的面积表示为S△ABC-S△BPE即可求解; (3)假设存在符合条件的t值,由相似三角形的性质即可求得. 【解析】 (1)∵点A在线段PQ的垂直平分线上, ∴AP=AQ; ∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°, ∴∠EQC=45°; ∴∠DEF=∠EQC; ∴CE=CQ; 由题意知:CE=t,BP=2t, ∴CQ=t; ∴AQ=8-t; 在Rt△ABC中,由勾股定理得:AB=10cm; 则AP=10-2t; ∴10-2t=8-t; 解得:t=2; 答:当t=2s时,点A在线段PQ的垂直平分线上; (2)过P作PM⊥BE,交BE于M ∴∠BMP=90°; 在Rt△ABC和Rt△BPM中,, ∴; ∴PM=; ∵BC=6cm,CE=t,∴BE=6-t; ∴y=S△ABC-S△BPE=-=- ==; ∵, ∴抛物线开口向上; ∴当t=3时,y最小=; 答:当t=3s时,四边形APEC的面积最小,最小面积为cm2. (3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上; 过P作PN⊥AC,交AC于N ∴∠ANP=∠ACB=∠PNQ=90°; ∵∠PAN=∠BAC, ∴△PAN∽△BAC; ∴; ∴; ∴,; ∵NQ=AQ-AN, ∴NQ=8-t-()= ∵∠ACB=90°,B、C、E、F在同一条直线上, ∴∠QCF=90°,∠QCF=∠PNQ; ∵∠FQC=∠PQN, ∴△QCF∽△QNP; ∴,∴; ∵0<t<4.5,∴; 解得:t=1; 答:当t=1s,点P、Q、F三点在同一条直线上.
复制答案
考点分析:
相关试题推荐
函数f(x)=x2+mx+m(a,b∈R)的定义域为[-1,1],且|f(x)|的最大值为M.
(1)证明:|1+m|≤M;
(2)求M的最小值,并求出当M取最小值时函数f(x)的解析式.
查看答案
自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

manfen5.com 满分网 查看答案
如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1
(1)若c=a1,求证:a=kc;
(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.
manfen5.com 满分网
查看答案
已知抛物线manfen5.com 满分网上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线manfen5.com 满分网与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

manfen5.com 满分网 查看答案
给出三条线段a=manfen5.com 满分网+1,b=2,c=manfen5.com 满分网
(1)操作:
①求作△ABC,使BC=a,AC=b,AB=c;
②作∠C的角平分线交AB于点D;
(2)求:
manfen5.com 满分网的值;
②△ABC和△BCD的最小覆盖圆的半径r1、r2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.