在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为
个单位长度.如图,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
(1)求k的值;
(2)若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标.
考点分析:
相关试题推荐
如图,△ABC内一点P,AB=AC,若∠APB=∠APC,求证:∠PBC=∠PCB.
查看答案
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中
上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:AD+BD=
CD.
查看答案
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D
1CE
1(如图乙).这时AB与CD
1相交于点O,与D
1E
1相交于点F.
(1)求∠OFE
1的度数;
(2)求线段AD
1的长;
(3)若把三角形D
1CE
1绕着点C顺时针再旋转30°得△D
2CE
2,这时点B在△D
2CE
2的内部,外部,还是边上?证明你的判断.
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2
,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)AC的值.
查看答案