(1)用一元二次方程根的判别式证明方程的根的情况.(2)根据根与系数的关系,把两根之和代入满足的等式,得到x1,再把x1代入方程可以求出m的值.
(1)证明:△=(m-2)2-4×(m-3),
=m2-6m+16,
=(m-3)2+7>0,
∴无论m取什么实数,这个方程总有两个不相等的实数根;
(2)【解析】
x1+x2=-(m-2),
2x1+x2=x1+(x1+x2)=m+1,
∴x1=m+1+m-2=2m-1,
把x1代入方程有:
(2m-1)2+(m-2)(2m-1)+m-3=0,
整理得:
6m2-m=0,
6m(m-)=0,
∴m1=0,m2=.