满分5 > 初中数学试题 >

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接D...

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
manfen5.com 满分网
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. (1)证明:∵四边形ABCD是正方形, ∴∠ACB=90°, 在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)【解析】 (1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG(SAS), ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG(ASA), ∴MG=NG; 在矩形AENM中,AM=EN, 在△AMG与△ENG中, ∵AM=EN,∠AMG=∠ENG,MG=NG, ∴△AMG≌△ENG(SAS), ∴AG=EG, ∴EG=CG. 证法二:延长CG至M,使MG=CG, 连接MF,ME,EC, 在△DCG与△FMG中, ∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG≌△FMG. ∴MF=CD,∠FMG=∠DCG, ∴MF∥CD∥AB, ∴EF⊥MF. 在Rt△MFE与Rt△CBE中, ∵MF=CB,EF=BE, ∴△MFE≌△CBE ∴∠MEF=∠CEB. ∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°, ∴△MEC为直角三角形. ∵MG=CG, ∴EG=MC, ∴EG=CG. (3)【解析】 (1)中的结论仍然成立.理由如下: 过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM, 又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°, ∴△MEC是等腰直角三角形, ∵G为CM中点, ∴EG=CG,EG⊥CG.
复制答案
考点分析:
相关试题推荐
如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.该矩形草坪BC边的长是    米.
manfen5.com 满分网 查看答案
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
manfen5.com 满分网 查看答案
关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个k的负整数值,并求出方程的根.
查看答案
如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).
(1)将原来的Rt△ABC绕点O顺时针旋转90°得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形.
(2)求线段BC扫过的面积.
(3)求点A旋转到A1路径长.
manfen5.com 满分网
查看答案
解下列方程:
(1)2x(x-3)=5(x-3).                   (2)x2-6x-6=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.