满分5 > 初中数学试题 >

如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A...

如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

manfen5.com 满分网
(1)当点A是BO的中点时,根据△ACD∽△FCA,可将AF的长求出; (2)当GH为⊙O的直径时,根据△AGH∽△AFD,可将△AFD的面积求出;当GH不是直径时,可知△AGH为等腰直角三角形,从而可将△AFD的面积求出. 【解析】 (1)∵BC=4,A是OB的中点 ∴AC=3 又∵DC为⊙O的切线 ∴∠ACD=∠ACF=90° ∵AD⊥AF ∴∠ADC、∠CAF都和∠DAC互余 ∴∠ADC=∠CAF ∴△ACD∽△FCA ∴CD:AC=AC:FC 即2:3=3:FC ∴FC= ∴AF===; (2)∵∠AGH=∠AFD,∠DAF=∠HAG, ∴△AGH∽△AFD, ∴∠AGH=∠F=∠CAG,∠AHG=∠D=∠CAF, ∴AE=GE=HE, ①如图1,如果GH是直径(即A与B重合,E与O重合),那么GH=4; 在直角△AFD中,FC=8,FD=10, ∵△AGH∽△AFD, ∴△AGH与△AFD相似比为GH:FD=4:10, ∴这两个相似三角形的面积比为16:100, 而△AFD的面积为20, ∴△AGH的面积=20×16÷100=3.2; ②如图2,如果GH不是直径,由GE=HE, 根据垂径定理的推论可得GH⊥BC, ∴AC垂直平分GH, ∴AG=AH,且GH∥FD, 而∠GAH=90°,则∠AGH=45°. ∴∠D=∠AGH=45°, ∴在直角三角形△ACD中,∠DAC=45°. ∴AC=CD=2 而OC=2, ∴A、O点重合,故AG=AH=2 ∴△AGH的面积=2.
复制答案
考点分析:
相关试题推荐
2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.
(1)哪个队先到达终点乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
manfen5.com 满分网
查看答案
如图,茂名电视塔离小明家60米,小明从自家的阳台眺望电视塔,并测得塔尖C的仰角是45°,而塔底部D的俯角是30°,求茂名电视塔CD的高度.

manfen5.com 满分网 查看答案
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.
(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;
(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.

manfen5.com 满分网 查看答案
某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
景点ABCDE
原价(元)1010152025
现价(元)55152530
平均日人数(千人)11232
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体实际?
查看答案
如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=manfen5.com 满分网
(1)求点M离地面AC的高度BM(单位:厘米);
(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘
manfen5.com 满分网米).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.