满分5 > 初中数学试题 >

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从...

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点. (2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值. (3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值. 【解析】 (1)点M.(1分) (2)经过t秒时,NB=t,OM=2t, 则CN=3-t,AM=4-2t, ∵A(4,0),C(0,4), ∴AO=CO=4, ∵∠AOC=90°, ∴∠BCA=∠MAQ=45°, ∴QN=CN=3-t ∴PQ=1+t,(2分) ∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.(3分) ∴S=-t2+t+2=-t2+t-++2=-(t-)2+,(5分) ∵0≤t<2 ∴当时,S的值最大.(6分) (3)存在.(7分) 设经过t秒时,NB=t,OM=2t 则CN=3-t,AM=4-2t ∴∠BCA=∠MAQ=45°(8分) ①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高 ∴PQ是底边MA的中线 ∴PQ=AP=MA ∴1+t=(4-2t) ∴t= ∴点M的坐标为(1,0)(10分) ②若∠QMA=90°,此时QM与QP重合 ∴QM=QP=MA ∴1+t=4-2t ∴t=1 ∴点M的坐标为(2,0).(12分)
复制答案
考点分析:
相关试题推荐
如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.
(1)当点A是BO的中点时,求AF的长;
(2)若∠AGH=∠AFD,求△AGH的面积.

manfen5.com 满分网 查看答案
2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.
(1)哪个队先到达终点乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
manfen5.com 满分网
查看答案
如图,茂名电视塔离小明家60米,小明从自家的阳台眺望电视塔,并测得塔尖C的仰角是45°,而塔底部D的俯角是30°,求茂名电视塔CD的高度.

manfen5.com 满分网 查看答案
端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.
(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;
(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.

manfen5.com 满分网 查看答案
某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
景点ABCDE
原价(元)1010152025
现价(元)55152530
平均日人数(千人)11232
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体实际?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.