已知抛物线y=ax
2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标;
(3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值.
考点分析:
相关试题推荐
有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额).
查看答案
如图,AB是⊙O的直径,CD切⊙O于C点.AD交于⊙O点E.
(1)探索AC满足什么条件时,有AD⊥CD,并加以证明;
(2)当AD⊥CD,AD=4,AB=5时,求AC、DE的长度.
查看答案
桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方公平吗?
查看答案
已知关于x的方程(m-1)x
2-2mx+m=0有两个不相等的实数根x
1、x
2;
(1)求m的取值范围;
(2)若(x
1-x
2)
2=8,求m的值.
查看答案
如图,△ABC是等边三角形,D、E在BC所在的直线上,且AB•AC=BD•CE.
求证:△ABD∽△ECA.
查看答案