满分5 >
初中数学试题 >
若菱形的较长对角线为24cm,面积为120cm2,则它的周长为( ) A.50c...
若菱形的较长对角线为24cm,面积为120cm2,则它的周长为( )
A.50cm
B.51cm
C.52cm
D.56cm
考点分析:
相关试题推荐
若点(3,4)在反比例函数y=
的图象上,则此反比例函数必经过点( )
A.(2,6)
B.(2,-6)
C.(4,-3)
D.(3,-4)
查看答案
下列函数中,图象经过点(1,-1)的反比例函数解析式是( )
A.y=
B.y=
C.y=
D.y=
查看答案
已知抛物线y=ax
2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标;
(3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值.
查看答案
有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额).
查看答案
如图,AB是⊙O的直径,CD切⊙O于C点.AD交于⊙O点E.
(1)探索AC满足什么条件时,有AD⊥CD,并加以证明;
(2)当AD⊥CD,AD=4,AB=5时,求AC、DE的长度.
查看答案