满分5 > 初中数学试题 >

已知:△ABC是任意三角形. (1)如图1所示,点M、P、N分别是边AB、BC、...

已知:△ABC是任意三角形.
manfen5.com 满分网
(1)如图1所示,点M、P、N分别是边AB、BC、CA的中点,求证:∠MPN=∠A.
(2)如图2所示,点M、N分别在边AB、AC上,且manfen5.com 满分网manfen5.com 满分网,点P1、P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.
(3)如图3所示,点M、N分别在边AB、AC上,且manfen5.com 满分网manfen5.com 满分网,点P1、P2、…、P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=______
(请直接将该小问的答案写在横线上)
(1)由三角形的中位线定理可得到四边形AMPN是平行四边形,故有∠MPN=∠A; (2)由平行线分线段成比例,可得到四边形MBP1N、MP1P2N、MP2CN都是平行四边形,有∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A,故∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A. (3)类似地,可得到∠MP1N+∠MP2N+…+∠MP2009N=∠A. (1)证明:∵点M、P、N分别是AB、BC、CA的中点, ∴线段MP、PN是△ABC的中位线, ∴MP∥AN,PN∥AM,(1分) ∴四边形AMPN是平行四边形,(2分) ∴∠MPN=∠A.(3分) (2)【解析】 ∠MP1N+∠MP2N=∠A正确.(4分) 如图所示,连接MN,(5分) ∵,∠A=∠A, ∴△AMN∽△ABC, ∴∠AMN=∠B,, ∴MN∥BC,MN=BC,(6分) ∵点P1、P2是边BC的三等分点, ∴MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等, ∴四边形MBP1N、MP1P2N、MP2CN都是平行四边形, ∴MB∥NP1,MP1∥NP2,MP2∥AC, (7分) ∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A, ∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A. (3)【解析】 ∠A. 理由:连接MN, ∵,∠A=∠A, ∴△AMN∽△ABC, ∴∠AMN=∠B,, ∴MN∥BC,MN=BC, ∵P1、P2、…、P2009是边BC的2010等分点, ∴MN与BP1平行且相等,MN与P1P2平行且相等,…,MN与P2009C平行且相等, ∴四边形MBP1N、MP1P2N、…、MP2009CN都是平行四边形, ∴MB∥NP1,MP1∥NP2,…,MP2009∥AC, ∴∠MP1N=∠BMP1,∠MP2N=∠P1MP2,…,∠BMP2009=∠A, ∴∠MP1N+∠MP2N=∠BMP1+∠P1MP2+…+∠P2008MP2009=∠BMP2009=∠A.
复制答案
考点分析:
相关试题推荐
据报道,我省农作物秸秆的资源巨大,但合理利用量十分有限,2008年的利用率只有30%,大部分秸秆被直接焚烧了,假定我省每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2010年的利用率提高到60%,求每年的增长率.(取manfen5.com 满分网≈1.414)
查看答案
已知△ABC中,BC=a,AC=b,AB=c.且2b=a+c,延长CA到D,使AD=AB,连接BD
(1)求证:2∠D=∠BAC;
(2)求tanmanfen5.com 满分网∠BAC•tanmanfen5.com 满分网∠BCA之值.

manfen5.com 满分网 查看答案
已知,在平行四边形ABCD中,BC=2AB,M为AD的中点,CE⊥AB于E.
求证:∠DME=3∠AEM.

manfen5.com 满分网 查看答案
如图,在等腰直角△ABC的斜边AB上取两点M、N(不与A、B重合)使∠MCN=45°,记AM=m,MN=x,NB=n,试判断以x、m、n为边长的三角形的形状,并给予说明.

manfen5.com 满分网 查看答案
如图:在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.