满分5 > 初中数学试题 >

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2) ...

如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

manfen5.com 满分网
(1)根据题意,过点A作AF⊥x轴,垂足为点F,过点B作BE⊥x轴,垂足为点E;根据相似三角形的性质,可得BE、OE的值,进而可得B点的坐标; (2)先设抛物线为y=ax2+bx+c,将ABC的坐标代入可得三元一次方程组,解即可得abc的值,即可得抛物线的解析式; (3)根据题意设抛物线上符合条件的点P到AB的距离为d,易得AB∥x轴;分析可得点P的纵坐标只能是0,或4;分情况代入数据可得答案. 【解析】 (1)过点A作AF⊥x轴,垂足为点F, 过点B作BE⊥x轴,垂足为点E,则AF=2,OF=1. ∵OA⊥OB, ∴∠AOF+∠BOE=90度. 又∵∠BOE+∠OBE=90°, ∴∠AOF=∠OBE, ∴Rt△AFO∽Rt△OEB, ∴, ∴BE=2,OE=4, ∴B(4,2).(2分) (2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax2+bx+c. ∴ 解之,得, ∴所求抛物线的表达式为y=x2-x.(5分) (3)由题意,知AB∥x轴. 设抛物线上符合条件的点P到AB的距离为d,则S△ABP=AB•d=AB•AF=5. ∴d=2. ∴点P的纵坐标只能是0,或4.(7分) 令y=0,得y=x2-x=0. 解之,得x=0,或x=3. ∴符合条件的点P1(0,0),P2(3,0). 令y=4,得x2-x=4. 解之,得. ∴符合条件的点,. ∴综上,符合题意的点有四个: P1(0,0),P2(3,0),,.(10分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AC=6,AB=12,cosA=manfen5.com 满分网,点M在AB上运动,MP∥AC交BC于P,MQ⊥AC于Q,设AM=x,梯形MPCQ的面积为y.
(1)求y关于x的函数表达式及自变量x的取值范围;
(2)当梯形MPCQ的面积为4时,求x的值;
(3)梯形MPCQ的面积是否有最大值,如果有,求出最大值;如果没有,请说明理由.

manfen5.com 满分网 查看答案
阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
【解析】
设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是______
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)

manfen5.com 满分网 查看答案
推理运算:二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移______个单位,使得该图象的顶点在原点.
查看答案
已知抛物线y=x2-2x-8.
(1)试说明该抛物线与x轴一定有两个交点.
(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.
查看答案
已知二次函数的图象经过原点及点(-manfen5.com 满分网,-manfen5.com 满分网),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.