满分5 > 初中数学试题 >

(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A...

(北师大版)已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.
(1)当α=30°时(如图2),求证:AG=DH;
(2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.
manfen5.com 满分网
(1)由题意易证出AG=AD,DH=DB,而AD=DB,可得AG=DH; (2)可由证△AMD≌△DNB,再证△AMG≌△DNH,证出AG=DH; (3)可证Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD,证出AG=DH. 【解析】 (1)∵α=30°, ∴∠ADM=30°, ∵∠A=30°, ∴∠ADM=∠A. ∴AM=DM. 又∵MG⊥AD于G, ∴AG=AD. ∵∠CDB=180°-∠EDF-∠ADM=60°,∠B=60°, ∴△CDB是等边三角形. 又∵CH⊥DB于H, ∴DH=DB. ∵在△ABC中,∠ACB=90°,∠A=30°, ∴BC=AB. ∵BC=BD, ∴AD=DB. ∴AG=DH. (2)结论成立.理由如下: 在△AMD与△DNB中,∠A=∠NDB=30°,AD=DB,∠MDA=∠B=60°, ∴△AMD≌△DNB, ∴AM=DN. 又∵在△AMG与△DNH中,∠A=∠NDB,∠MGA=∠NHD=90°, ∴△AMG≌△DNH. ∴AG=DH. (3)方法一:【解析】 结论成立. Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD. ∵∠C=∠MDN=90° ∴C,D两点在以MN为直径的圆上, ∴C,M,D,N四点共圆 ∴∠DNM=∠DCA=30°, ∴DN=DM 又∵△DGM∽△NHD, ∴DH=MG=AG. 方法二: 【解析】 当0°<α<90°时,(1)中的结论成立. 在Rt△AMG中,∠A=30°, ∴∠AMG=60°=∠B. 又∠AGM=∠NHB=90°, ∴△AGM∽△NHB. ∴① ∵∠MDG=α, ∴∠DMG=90°-α=∠NDH. 又∠MGD=∠DHN=90°, ∴Rt△MGD∽Rt△DHN. ∴= ② ①×②,得.= 由比例的性质,得 = ∵AD=DB, ∴AG=DH.
复制答案
考点分析:
相关试题推荐
为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.
manfen5.com 满分网
(1)根据图1提供的信息,补全图2中的频数分布直方图;
(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是______3,众数是______3,中位数是______3
(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少米3
查看答案
如图所示,在离某建筑物4m处有一棵树,在某时刻,1.2m长的竹竿垂直地面,影长为2m,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m,那么这棵树高约有多少米?

manfen5.com 满分网 查看答案
某地要筑一水坝,需要在规定日期内完成,如果由甲队去做,恰好如期完成;如果由乙队去做,则需超过规定日期3天.现由甲、乙两对合作2天后,余下的工程由乙队独做,恰好在规定日期内完成.求规定的日期.
查看答案
对于题目“化简并求值:manfen5.com 满分网+manfen5.com 满分网,其中a=manfen5.com 满分网”,甲、乙两人的解答不同.
甲的解答:manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网-a=manfen5.com 满分网-a=manfen5.com 满分网
乙的解答:manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网+a-manfen5.com 满分网=a=manfen5.com 满分网
请你判断谁的答案是错误的,为什么?
查看答案
已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.