①延长O2O1交圆O1于M,连接AB、AM、BM、O2B,根据相交两圆的性质推出O2O1是AB的垂直平分线,得出∠AO1O2=∠AO1B=∠AMB,根据圆内接四边形的性质得出∠AMB=∠BDC,即可判断;②证△BDC∽△AO1O2即可;③无法证出BD=DC,即可判断③;④由△BDC∽△AO1O2,得出∠O2AO1=∠DBC,∠BDC=∠AO1O2,根据等腰三角形的性质得出∠BDC=∠CBD即可.
【解析】
延长O2O1交圆O1于M,连接AB、AM、BM、O2B,
∵圆O1与圆O2交于A、B,
∴O2O1是AB的垂直平分线,
∵O1A=O1B,
∴∠AO1O2=∠AO1B=∠AMB,
∵四边形AMBD是圆O1的内接四边形,
∴∠AMB=∠BDC,
∴①正确;
∵O1A=O1B,
∴∠C=∠AO2B=∠AO2M,∠AO1O2=∠AMB,
∴△BDC∽△AO1O2,
∴=,
∴②正确;
∵△BDC∽△AO1O2,
∴∠O2AO1=∠DBC,∠BDC=∠AO1O2,
∵O2A=O2B,
∴∠AO1O2=∠O2AO1,
∴∠DBC=∠BDC,
∴DC=BC,∴④正确;
无法证出∠C=∠DBC,
即BD≠DC,
∵AD=BD,
∴③错误.
故答案为:①②④.